Reactive oxygen species signaling in response to pathogens.

نویسندگان

  • Miguel Angel Torres
  • Jonathan D G Jones
  • Jeffery L Dangl
چکیده

The production of reactive oxygen species (ROS), via consumption of oxygen in a so-called oxidative burst, is one of the earliest cellular responses following successful pathogen recognition. Apoplastic generation of superoxide (O2 ), or its dismutation product hydrogen peroxide (H2O2), has been documented following recognition of a variety of pathogens (Doke, 1983; Auh and Murphy, 1995; Grant et al., 2000b). Avirulent pathogens, successfully recognized via the action of disease resistance (R) gene products in plant immune system, elicit a biphasic ROS accumulation with a low-amplitude, transient first phase, followed by a sustained phase of much higher magnitude that correlates with disease resistance (Lamb and Dixon, 1997). However, virulent pathogens that avoid host recognition induce only the transient, low-amplitude first phase of this response, suggesting a role for ROS in the establishment of the defenses. In line with this conclusion, elicitors of defense responses, often referred to as microbe-associated molecular patterns (MAMPs), also trigger an oxidative burst. Initial characterization of the oxidative burst left unclear whether ROS acted as executioners of pathogen, host cells (in the form of the familiar hypersensitive response [HR]), or both, or, alternatively, as signaling molecules that were not directly involved in the mechanisms that actually stopped pathogen growth. In the plant cell, ROS can directly cause strengthening of host cell walls via cross-linking of glycoproteins (Bradley et al., 1992; Lamb and Dixon, 1997), or lipid peroxidation and membrane damage (Lamb and Dixon, 1997; Montillet et al., 2005). However, it is also evident that ROS are important signals mediating defense gene activation (Levine et al., 1994). Additional regulatory functions for ROS in defense occur in conjunction with other plant signaling molecules, particularly with salicylic acid (SA) and nitric oxide (NO; see Fig. 1). However, ROS also regulate additional plant responses in relation to other signals. Here, we discuss these roles of ROS with a focus on the response to pathogen infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical Aspects of Protein Changes in Seed Physiology and Germination

Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...

متن کامل

Biochemical Aspects of Protein Changes in Seed Physiology and Germination

Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...

متن کامل

Update on Reactive Oxygen Species in Plant Pathology Reactive Oxygen Species Signaling in Response to Pathogens

The production of reactive oxygen species (ROS), via consumption of oxygen in a so-called oxidative burst, is one of the earliest cellular responses following successful pathogen recognition. Apoplastic generation of superoxide (O2 ), or its dismutation product hydrogen peroxide (H2O2), has been documented following recognition of a variety of pathogens (Doke, 1983; Auh and Murphy, 1995; Grant ...

متن کامل

I-33: Oxidative Stress Responses in EarlyPregnancy

Background: Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Materials and Methods: Laboratory-based analysis of endometrial biopsies and primary endometrial cultures. Results: Using primary cultures, we show that modest levels of reactiv...

متن کامل

Erratum to

1364 Plant Signaling & Behavior Volume 7 Issue 10 Correct title of the article in Plant Signaling & Behavior Volume 5, Issue 7, 872–4: Role of nitric oxide and reactive oxygen species in disease resistance to necrotrophic pathogens. Erratum to: Asai S, Mase K, Yoshioka H. Role of nitric oxide and reactive oxide species in disease resistance to necrotrophic pathogens. Plant Signaling & Behavior ...

متن کامل

Reactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β

Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 141 2  شماره 

صفحات  -

تاریخ انتشار 2006